If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-16x-90=0
a = 2; b = -16; c = -90;
Δ = b2-4ac
Δ = -162-4·2·(-90)
Δ = 976
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{976}=\sqrt{16*61}=\sqrt{16}*\sqrt{61}=4\sqrt{61}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-4\sqrt{61}}{2*2}=\frac{16-4\sqrt{61}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+4\sqrt{61}}{2*2}=\frac{16+4\sqrt{61}}{4} $
| 4x+-7=7x+-7 | | 0=4x^2+12.5x+5.25 | | 4x-(-4)=20 | | 2y+11=51-3y | | 7x-(x=2)=6(x-2) | | -8y-4y-17=18 | | 4x-9=24+3= | | 5x-8x-9=-3x+2=-9 | | 13=23-5z | | 7x-(x=2 | | 2(x+4)-3x=-(x-7)+1 | | -v+21=186 | | 2(x+4)-3x=-(x-7 | | 253-u=48 | | 64=-8p(32) | | (x-3)^2+5=-11 | | -47m-7m=2 | | 204=89-u | | 10x-3x=-67 | | 4x-1=2(x+3)+2x | | 77=-x+257 | | 256(44-a)=44 | | 6(x-2)/2=3(x+1)/6 | | 7x+2=-4+2x=21 | | 20n=5(4+n) | | 7=–3c–2 | | 3v-5=-8 | | -(x-3)=4x+3-5x | | -2+v/5=-37 | | 7(x9)=9(x-5)-14x | | 5x+45=169 | | 0=8x2+12x-1248 |